Oil‐Impregnated Nanoporous Oxide Layer for Corrosion Protection with Self‐Healing

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface engineering of nanoporous substrate for solid oxide fuel cells with atomic layer-deposited electrolyte

Solid oxide fuel cells with atomic layer-deposited thin film electrolytes supported on anodic aluminum oxide (AAO) are electrochemically characterized with varying thickness of bottom electrode catalyst (BEC); BECs which are 0.5 and 4 times thicker than the size of AAO pores are tested. The thicker BEC ensures far more active mass transport on the BEC side and resultantly the thicker BEC cell g...

متن کامل

Numerical methods for the simulation of a corrosion model with moving oxide layer

In this paper, we design numerical methods for a PDE system arising in corrosion modeling. This system describes the evolution of a dense oxide layer. It is based on a drift–diffusion system and includes moving boundary equations. The choice of the numerical methods is justified by a stability analysis and by the study of their numerical performance. Finally, numerical experiments with real-lif...

متن کامل

VIII-Metals-J-Corrosion protection-1_ CORROSION PROTECTION OF METALS

Nearly all metals, with the exception of gold and platinum, will corrode in an oxidising environment forming compounds such as oxides, hydroxides and sulphides. The degradation of metals by corrosion is a universal reaction, caused by the simple fact that the oxide of a metal has a much lower energy than the metal itself. Hence there is a strong driving force for the oxidation of metals. For ex...

متن کامل

Alumina nanostructured coating for corrosion protection of 316L stainless steel

Nanostructured alumina thin films were coated on stainless steel by Sol-Gel dip coating method. In order to prevent crack formation, Al2O3 films were kept in a solvent bath immediately after coating to reduce the rate of drying. Effects of calcination temperature and withdrawal speed on structural properties were analyzed using XRD and SEM. Topography and thickness of coat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advanced Functional Materials

سال: 2017

ISSN: 1616-301X,1616-3028

DOI: 10.1002/adfm.201606040